Class: Matrix la.py

A 3x3 square matrix.

Base Classes
_ReprMixin
object
Methods
```__add__ ( self,  other )

```

Return M + N.

__cofactor
```__cofactor (
self,
i,
j,
)

```

Return the cofactor for the (i, j)-th element.

__cofactorSign
```__cofactorSign (
self,
i,
j,
)

```

Compute (-1)^(i + j) to help in determining cofactors.

__div__
```__div__ ( self,  scalar )

```

Return M/r.

__eq__
```__eq__ ( self,  other )

```

Return M == N.

__ge__
```__ge__ ( self,  other )

```
Exceptions
TypeError, "no ordering on matrices"
__getitem__
```__getitem__ ( self,  index )

```
__gt__
```__gt__ ( self,  other )

```
Exceptions
TypeError, "no ordering on matrices"
__init__
```__init__ (
self,
a,
b,
c,
d,
e,
f,
g,
h,
i,
)

```
__le__
```__le__ ( self,  other )

```
Exceptions
TypeError, "no ordering on matrices"
__len__
```__len__ ( self )

```
__lt__
```__lt__ ( self,  other )

```
Exceptions
TypeError, "no ordering on matrices"
__minorDeterminant
```__minorDeterminant ( self,  minor )

```

Find the determinant of a 2x2 matrix represented as a 4-tuple.

__mul__
```__mul__ ( self,  scalar )

```

Return M r.

__ne__
```__ne__ ( self,  other )

```

Return M != N.

__neg__
```__neg__ ( self )

```

Return -1 M.

__pow__
```__pow__ ( self,  exponent )

```

Return M^n.

Exceptions
TypeError, "exponent must be integral"
ValueError, "exponent must be positive; use .inverse for inversions"
__rmul__
```__rmul__ ( self,  scalar )

```

Return r M.

__str__
```__str__ ( self )

```
__sub__
```__sub__ ( self,  other )

```

Return M - N.

```adjoint ( self )

```

column
```column ( self,  index )

```

Get the nth column as a vector.

columns
```columns ( self )

```

Return the columns of the matrix as a sequence of vectors.

concatenate
```concatenate ( self,  other )

```

Return M1 M2.

determinant
```determinant ( self )

```

Return the determinant of the matrix, det M.

inverse
```inverse ( self )

```

Return M^-1 where M M^-1 = M^-1 M = I.

isDiagonal
```isDiagonal ( self )

```

Are only the elements on the diagonal nonzero?

isSingular
```isSingular ( self )

```

Is the matrix singular?

row
```row ( self,  index )

```

Get the nth row as a vector.

rows
```rows ( self )

```

Return the rows of the matrix as a sequence of vectors.

trace
```trace ( self )

```

Return the trace of the matrix, tr M.

transform
```transform ( self,  vector )

```

Return v M.

transpose
```transpose ( self )

```

Return the transpose of the matrix, M^T.